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Abstract-Second-order thermal boundary-layer problem is formulated for an inviscid plane or axi- 
symmetric flow. The resulting energy equations which govern the effects of both longitudinal and transverse 
curvatures, external temperature gradient and vorticity are solved both exactly and approximately. 
Applications of the present theory are given for heat transfer from elliptical-rod bundles and that 

from a sphere. 

Bernoulli function defined by (11); 
temperature in outer region; 
variable defined to be zero for plane flow 
and one for axisymmetric flow; 
longitudinal curvature parameter defined 

by (23); 
transverse curvature parameter defined 

by (24) ; 
vorticity parameter defined by (25); 
external temperature gradient parameter 
defined by (26); 
characteristic length of the body; 
local Nusselt number; 
non-dimensional pressure referred to p U,” ; 
P&let number (= U,L/or); 
heat flux at the wall; 
non-dimensional velocity; 
non-dimensional radial coordinate; 
non-dimensional body transverse radius of 
curvature; 

Greek symbols 

non-dimensional temperature; 
non-dimensional first- and the second-order 
temperature in outer region; 
non-dimensional first- and the second-order 
temperature in inner region; 
non-dimensional temperature at the surface 
of the body; 
nondimensional free stream temperature; 
characteristic temperature; 
non-dimensional tangential and normal 
velocity components; 
non-dimensional velocity at the surface of 
the body; 
characteristic velocity; 
non-dimensional free stream velocity; 
non-dimensional coordinate along the body; 
non-dimensional coordinate normal to the 
body; 
stretched normal coordinate defined by (8). 

NOMENCLATURE 

a, thermal diffusivity; 

7, principal thermal function defined by (32); 

4 small parameter defined by (35); 
sI, E,, small parameter defined by (61); 

i> variable defined by (20); 
@a, 01, functions defined by (21); 

5 

longitudinal surface curvature of the body; 
variable defined by (20); 

x1, principal function defined by (32); 

P% density; 

$9 non-dimensional stream function defined 

by (5). 

1. INTRODUCTION 

IN CALCULATING heat transfer to liquid metals or 
heat/mass transfer from a droplet, we can reasonably 
approx~ate the velocity in the energy equation by 

inviscid flow [l, 21. This approximation usually makes 
analysis considerably simple, particularly when the flow 
is twodimensional and irrotational, for which the well- 
known Boussinesq transformation may be successfully 
applied to the energy equation and the exact solutions 
ofthe transformed equation have already been obtained 
by Aichi [3] and also by Tomotika and Yosinobu [4]. 
However, exact solutions given by the former are of 
inconvenient forms for numerical calculation and that 
by the latter is applicable only to the case of constant 
wall temperature. Moreover, when the flow is three- 
dimensional, the Boussinesq transformation is of no 
use and exact solutions are still hopeless. Therefore, 
most of the investigators who calculated heat transfer 
in an inviscid flow introduced some further approxi- 
mations, among which a thin thermal boundary-layer 
approximation is most frequently used. It is well known 
that the thermal boundary-layer theory represents the 
leading term in an asymptotic expansion of the energy 
equation for large P&let numbers. For viscous flow, 
van Dyke [S] formulated systematically a set of both 
momentum and energy equations which govern the 
second-order boundary-layer effects, that is, the effects 
of displacement thickness, both longitudinal and trans- 
verse curvatures, external vorticity and stagnation 
enthalpy gradient, for the case of plane or ~isymmetric 
flow and, after that, many investigators obtained solu- 
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tions of these second-order equations. For inviscid flow, 
on the other hand, no attempt has been made, as far 
as the present writer knows, to formulate such a 
second-order problem. 

The aim of the present paper is to formulate the 
first- and the second-order equations for steady incom- 
pressible inviscid flow past plane or axisymmetric solid 
bodies with nonisothermal wall temperature, and to 
give solutions of the resulting equations, both exactly 
and approximately. To obtain the approximate solu- 
tions, an approximate method proposed by Merk [6] 
for calculating non-similar viscous boundary layer is 
extended. 

As examples of applications of the present theory, 
heat transfer from elliptical-rod bundles and from a 
sphere is calculated. 

FORMULATION OF THE PROBLEM 

Consider steady incompressible inviscid flow past 
plane or axisymmetric solid bodies as shown in Fig. 1, 
in which all lengths are referred to a characteristic 

Y 

FIG. 1. Coordinate system. u = u(x,O)+(~U/~~)~=~Y+O(Y~), 

length of the body L and velocities and temperatures 
to respective characteristic values, U, and T,. We 
assume for simplicity that the temperature far up- 
stream, T,, is independent of the P&let number. The 
governing equation for temperature is 

q.grad t-Pe-‘V’t = 0, (1) 

where q = (u, v, 0) is assumed to be known, t is the 
non-dimensional temperature referred to r and Pe the 
P&let number (= &L/a), a being the thermal dif- 
fusivity of the fluid. The boundary conditions are 

and 

t = T,(x) aty=O 

t --+ T, upstream. I 
(2) 

The formulation of the thermal boundary-layer 
theory can be made by using the method of matched 
asymptotic expansions with Pe-f as a perturbation 
parameter. According to this method, the temperature 
is obtained as an expansion in terms of Pe-* in each 
of two regions; one is the thermal boundary-layer 

region (inner region) adjacent to the wall with the thick- 
ness of the order Pe-*, and the other is the region 
outside this layer (outer region). 

In the outer region we assume an expansion of the 
form (outer expansion) 

t = to(x,y)+Pe-+t,(x,y)+O(Pe-‘), 

as Pe -+ cc with x and y fixed. (3) 

Substituting (3) into (1) gives 

q.gradt,, = q.gradtr = 0. (4) 

This shows that to and tl are constant along the stream- 
line and are therefore functions only of the stream 
function $, which is related to u and v by the relation 

a$fay = A 
and a*/ax = - rj( 1 + KY)V, 1 

(5) 

with j = 0 for plane flow and j = 1 for axisymmetric 
flow. Hence, using the upstream condition and noting 
that T, is independent of Pe, we have 

to = H($), (6) 

Cl =o, (7) 

where H($) denotes a function only of $ and are to be 
evaluated from the upstream condition. Since the order 
of equation (4) is reduced by one, the boundary con- 
dition on the surface has been dropped; therefore solu- 
tions (6) and (7) are invalid in the inner region. 

In the inner region near the surface, we stretch the 
normal coordinate by introducing the following inner 
variable 

Y = Pe+y, (8) 

and assume an expansion of the form (inner expansion) 

t = To(x, Y) + Pe-*T,(x, Y) + O(Pe-‘), 

as Pe + a, with x and Y fixed. (9 

Since, in this region, y << 1, the longitudinal velocity u 
may be expressed as 

which can be written as an expansion in terms 
of Pe-* [5] 

u = u,+Pe-*{Z(O)r&-fcu,} Y+O(Pe-‘), (10) 

where up = u(x,O) and B(G) = p+J[q(* 
(Bernoulli function), (11) 

p being the nondimensional pressure referred to pU,‘. 
The normal velocity v may be obtained by integrating 
the equation of continuity 

~(rju)+~{rj(l+Ky)U} = 0, (12) 

to yield 

u = _ p,-+,,-j!!$d y 

+Pe-Ir~j[-f$irb~(O)rB-~u,+~u,)j 

+ (~+~)~]Y’+O(PeC+). (13) 
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Substituting (Q (9), (10) and (13) into (1) gives the where 
following equations. kg = (2~~u/r~u~, 
First-order equation: k, = (2Q*j cos @/Cajun, 

aT, _jd(rdu,) Yz as = o 
‘Pax-‘” dx aY-dY= ’ 

(14) and 
k, = (2@tu(O)/u: 

k, = (25)*H’(O)/tL -H(O)). 

1259 

(23) 

(24) 

(25) 

(26) 
Second-order equation: 

u %_r-jd(rBn,) YaT, a2T, 
p ax o-ay-ay2 dx 

Substituting (20~(22) into (14)-( 16) gives the following 
equations and boundary conditions. 

First-order eauation: 

The corresponding boundary conditions are 
= 2r~-2i~)+~il-1)Bb-2~~Bo, (28) 

T,(x, 0) = T,(x) and T,(x, 0) = 0. (16) e:(r, 0) = e:(5, CO) = 0, 

Since the inner expansion is invalid in the outer region, 6;’ + 46: - (y ..+ ,r,)6: = 25 
the upstream condition cannot be imposed on it. The 
missing condition is supplied by the matching con- 

~+(~+eL, (29) 

e:(<, 0) = 0: (5 ~0) = 0, 
dition that the outer expansion (3) and the inner ex- 
pansion (9) must agree in the overlapping domain in 
which both expansions are valid. The matching con- 
dition can be written as [7] 

ml{TO(x, Y)+Pe-*T& Y)+...) e;(r, 0) = e;(r, 00) = 0, 

= ;s {to(x,y)+Pe-*tl(x,y)f...}. (17) e~‘+~e~‘-e;=2~$, e;(t,o)=o, e;(r,~~)=[. (31) 

Bearing in mind that to and ti are given by (6) and (7) 
respectively, it can be easily shown that this matching 
condition reduces to 

7-0(x, Y) N H(O) (1%) 

and 

&(x, Y) h r~~~~(O)Y, (19) 

as Y -+ co. Thus, it is now found that the present 
problem is to solve equations (14) and (15) under the 
conditions (16), (18) and (19). 

It is advantageous, as for the case of viscous flow, to 
introduce the Gortler type variables defined by 

c= x s 0 

up rgjdx and r = %a Y. (20) 

Here 

2{ dki 

xi=kiz 
(i = 1, t, x), 

25 d&-H(O)) 

i ’ = ?&-H(O) dt ’ 

(32) 

and primes denote the differentiation with respect to [. 
The principal functions n/s and y are, in general, 
functions of r. If the principal thermal function y 
remains constant in stream direction, the first-order 
temperature, Bo, is similar (that is, B. is a function 
only of fJ and, if both y and Iii remain constant, et is 
also similar. Moreover, it is seen from (31) that the 
equation for Bf involves no principal function, meaning 
that @, is always similar. 

Finally, the local Nusselt number defined by 

The first- and the second-order temperature are also 4L 
changed to the following forms, N” = k~(~~-~(0))’ 

60(<, 5) = ~ and cw 
where q is the heat flux at the wall, is expressed as 

w 
&(K C) = &. 

w rdu 

Since the second-order equation (15) is linear, e1 may 
NaPe* = (2c)+ ----li-[Bo+Pe-~(k,e:‘+k,e:‘+k,BI 

be divided into four components which represent direct 
+kzef’)+u(Pe-i)]+o. (33) 

contributions due to longitudinal curvature (e:), trans- 3. FIRST-ORDER SOLUTION 

verse curvature (&), vorticity (03 and external tem- 
perature gradient (of), as 

The exact solution of the first-order equation (27) 

et = k,e:+k,et+k,e;+k,ef, 
has already been obtained by Morgan and Warner [8). 

(22) In the solution, however, an integral which, in general, 
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has to be evaluated numerically is contained. Since this 
is not desirable for practical use, we here seek an 
approximate solution which permits rapid calculation 
of heat transfer. For viscous flow, a large variety of the 
approximate methods for calculating heat transfer 
through a non-similar boundary layer have been pro- 
posed so far by many authors [9] and several authors 
[9-111 claimed that one of the most satisfactory 
methods is an approximate method due to Merk [6]. 
The principal idea of the method is to expand asymp- 
totically the full non-similar boundary-layer equations 
in terms of a small parameter which is a measure of 
the departure ofthe solutions from similarity, first terms 
of the expansions corresponding to so-called local 
similarity solutions. Great advantage of the method is 
that it is possible to refine the results in a straight- 
forward way by calculating the higher order terms. 
Moreover, it provides one of the most rapid calcu- 
lations hitherto propounded. 

In the present paper, the Merk’s method is extended 
to obtaining non-similar solutions of the equations 
(27)-(30). The key to an appropriate expansion is the 
inversion of an independent variable 5. Since Y is a given 
function of 5 for a given shape of the body and given 
temperature distribution on the wall, we may also say, 
inverting this function, that 5 is a function of Y. Thus, 
equation (27) may be written as 

eg+[&-ye, = E(Y):, (34) 
i 

where 
dY 

E(Y) = 25@ (35) 

and Be, assuming E is small, as 

@II = ~OO(Y> C)+s(Y)&*(Y, i)+ W). (36) 

Substituting (36) into (34) gives 

eg, + @&o -Y&J = 0, (37) 

e;;, +iSbt -(y+.a’)B,, = 9, (38) 

where E’ denotes d.s/dY. For the special case where Y 
remains constant in stream direction, E(Y) = 0 and 
therefore equation (37) yields an exact similar solution. 
Equation (38) represents the first correction which 
arises from non-similar terms. 

The solutions of the above equations satisfying the 
respective boundary conditions and matching condi- 
tions are easily found to be 

and 

001 = 

i 

x V(y + E’, <) for a’ + 0, (40) 

az~oo $y for L-0, 
aY 

(41) 

where 

i Fi (a, b, x) being the confluent hypergeometric func- 
tion satisfying the equation 

2 

x$+(b-+zu = 0. (43) 

From the above solutions, the temperature gradient at 
the surface can be obtained as 

-(K&=0 

= -ebo(Y, 0) -E(Y)&i(Y> 0) +O(s2) 

r 7 
C 1 

J2 
ebi(Y,O) = 

ry+l 
( 1 

i 
l+&(Y)-- 

Woo(y, 0) + O(s2) I ’ 

2 

where 

(44 

(45) 

for E’ + 0, (46) 

for E’ = 0, (47) 

Y and Y’ being the polygamma functions defined by 

Y(z) = T’(z)/T(z), Y’(z) = dY(z)/dz. 

It is seen from the above expressions that for Y < 0 
these heat-transfer results have an infinite number of 
singularities due to Gamma or polygamma functions, 
the first of these singularities being at y = -2 for 
eoo(Y, 0) and at Y = - 1 for t&i (Y, 0). Similar singu- 
larities are observed also in the second-order solutions, 
as we shall see later. 

Figure 2 shows the curves of Voo(Y, 0) and Pol(y, 0) 
plotted as functions of y. It is seen from the figures that 
the ratio ~@ol(y,O)/Boo(Y,O)( is very small for y > 0; 
this demonstrates the rapid convergence of the series 
(44) in this range of Y. For y < 0, on the other hand, 
the ratio becomes larger as y approaches nearer to - 1. 

For a given body and given temperature distribution, 
y, E and s‘ are known functions of x, so that, for each 
value of x, the corresponding value of (@o)C=o can be 
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where & = (tsI -J&)/U, is given in tabular form by 
Hsu [12,13) as a function of (a+ b)/2P, cPt and QDz 
being the values of velocity potential at the front and 
rear stagnation points of the cylinder, and 5 as 

r = (~~~#)(l -cos4). (49) 

substituting (45), @I?) and (49) into (33) gives for the 
local Nusseh number 

((1-e2)+J(l-~2)f(1+~s~) 

l-eZcosZq 

Y 

FIG. 2. First-order solution. 

\A / 

where e = (1 -b2/u2). It can be easily verified that when 
the temperature distribution of the surface is given by 

T,-H(0) = (1 - ~0s~)” with m = constant, (51) 

y is constant (= 2m) and therefore the focal Nusseh 
number is exactIy expressed by the first term in (SO), 
which includes the results of Hsu as special cases, As 
an example of non-simitar case, we calcufated heat 

FIG. 3. Schematic representation of tube bank geometries: (a) square spacing, 
fb) equilateral triangular spacing. 

calculated from equations (44)-(47). As an example, we 
shall calculate heat transfer from an elliptical rod 
located in the interior of an elliptical-rod bundle with 
square spacing or equilateral triangular spacing, such 
as those shown in Fig. 3. This problem was already 
treated by Hsu [12], but only for the special case when 
the wall temperature distribution is given by 

Y&-H(O) = (l-cosq)” with m = 0 and 1, 

? being the angle measured from the front stagnation 
point (Fig. 4). Hsu made the following assumptions: 
(1) flow is irrotational; (2) the distribution of hydro- 
dynamic potential around the surface of the rod is of the 
cosine type in terms ofelliptical cylindrical coordinates; 
and (3) interaction of the thermal boundary layers of 
the cylinders in a rod bundle is negligible. 

In the following, we will also make the same assump 
tions as the above. Then, deftning the reference velocity 
by U, = U, and reference length by L = 2a, respec- 
tively, up can be written as 

FIG. 4. Angle, u, measured from the front stagnation 
point. 

transfer when the wall tem~rature distribution 
given by 

is 

T&-H(O) = 2-&&Q, (52) 

for which an exact solution can be obtained by super- 
position of similar solutions, The heat-transfer result is 
shown in Fin. 5: the nresent result with two terms 
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14 r 
used as an independent variable as for the case of the 
first-order problem. 

FIG. 5. Heat-transfer results for tube banks 

agree with the exact one with error within about 04 
per cent and, if the desired accuracy is not higher than 
5 per cent, one term is sufficient to calculate heat 
transfer. 

4. SECOND-ORDER SOLUTIONS 

As is stated before, the equation (31) governing the 
second-order effect of external temperature gradient 
has a similar solution, which can be easily found to be 

0; = i. (53) 

From this, the wall temperature gradient can be ex- 
pressed as 

(e;‘),,, = 1. (54) 

The sign of this second-order contribution to heat 
transfer is opposite to that of the first-order contri- 
butions (@O)s=O, except for a special case in which a 
heat flow is directed from the stream to the wall even 
if the local wall temperature is greater than the local 
stream temperature, as is often the case with the situa- 
tion in which Y is negative; hence it can be said except 
for this special case that when k, > 0 the presence of 
the external temperature gradient decreases heat trans- 
fer, while when k, < 0 it increases heat transfer. For 
the special case stated above, on the other hand, this 
trend is reversed. It can be easily understood that these 
results are physically reasonable. 

Since the equations governing the remaining three 
second-order effects have no such similar solutions as 
the above, we shall employ the approximate procedure 
similar to that used in the first-order problem. Each of 
the three equations has two principal functions, Y and 
xi, which are functions of c; therefore even for the 
special case in which Y is constant in stream direction, 
the solutions of the equations are, in general, not 
similar. It is clear that for this special case y cannot 
be used as an independent variable in applying Merk’s 
method, and that xi should be used instead. [But, as 
we shall see later, the equation for 0: has a simihu 
solution when y is constant (but, xl is not, in general, 
constant) and therefore Merk’s procedure is not 
needed.] For the general case in which both Y and xi 
vary in stream direction, on the other hand, y can he 

(a) The case of y = constant 

We first consider the simpler case y = constant. For 
this special case, the first-order temperature is exactly 
expressed by Boo, which is given by (39). Hence, 
equations (28)-(30) may be written as 

e:*‘+ se;’ - (Y + 71,)e; 

Y(Y + l)(l -n3 
2 

‘i7(r -t I,13 

+ 
(2Y - l)(V + 1) Y(r _ 1 () 

2 
, 

-7 V(Y-3,l) +2+ 
1 

as: 
(55) 

2”2r yf2 ( > 2 Y(Y+ l)(n*- 1) 
= 

(n/2)f 
1 

2 
Vr + 1, 0 

@Y-1)(1-7%)+2 rj(r_l [) 

f * 

L 

-7 v(Y-3,c) +2$$ (56) 

e:“iye;‘-(y-we; 

2”2J- y+2 ( > 2 1 Y(Y+ l)(% - 1) = 
(n/2)) 2 

V(Y + 1, <) 

+u-2Yh+l qy 1 [) 

2 
- I 

+I++ 
-y- V(y-3,1) +2+. (57) 

i 

We can easily find that (55) has a following similar 
solution 

p/q- y+z ( 1 2 

e: = (x/2)) i 
v V(y + 1, [) 

-y V((Y-l,i)+tV(y-3,i) , (58) 
i 

Thus, the temperature profile representing the second- 
order effect of longitudinal curvature is independent 
of the principal function Q. Furthermore, we can 
obtain, from (58), the following interesting result 

@:‘),=, = 0, (59) 

meaning that when y = const., the longitudinal curva- 
ture does not contribute to heat transfer to the present 
order of P&let number. For viscous flow, Afzal and 
Oberai [14] showed that the convex longitudinal 
surface curvature (ki > 0) decreases heat transfer, and 
that this decrease in heat transfer is smaller for smaller 
values of Pr. Since inviscid flow approximation corre- 
sponds to the case Pr --, 0, the above result (59) is con- 
sistent with this tendency. According to Hirose [lS], 
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the convex curvature effects consist of two contri- 
butions: (a) increase of the diffusion area and (b) de- 
crease of tangential velocity with increasing normal 
distance from the surface of the body. The former en- 
hances the transfer rate while the latter lowers it. There- 
fore, AfzaI’s result together with the present result (59) 
indicates that for viscous flow the latter effect is of major 
importance, but that with decrease of Pr the former 
ef%ct increases and, in the Emit Pr -+ 4 i.e, for the case 
of inviscid flow, the magnitude of both effects becomes 
to be equal with opposite sign. The physical meaning 
of this trend is explained as follows: for low Prandti 
number fluids, heat conduction plays a more important 
part in heat transfer and therefore increase of the 
diffusion area is more effective for increasing heat 
transfer than for higher Prandtl number fluids. 

Since the equations for 0: and 0; have no such 
similar solutions as (58), we must employ, for solving 
them, the method similar to that used in the first-order 
problem; that is, we change variables from f&C) to 
(rrir[) with i = t or x and assume the fo~lo~ng 
expansion. 

dzi 
Ei=2%. 

Then, we have the following equations for S:, and 0:, , 

~~~~~~~~-~y+~j~~~~ 

where a and b are given in Table 1 and E! denotes 
dsi/dni I The solutions of (62) and (63) satisfying respec- 

tive boundary conditjons are 

y/21; -y+2 ( 1 2 
@o = (42)” i 

Y(Y + 1) - 
---Tj--- UY-+-Li) 

n*(l-z~)+a I Bi-b - - -- 
2(X5{+ 1) 

w-40 2(s+3) W--3,0 

x itijy~rr~+e~,~!J for ~fj:O, (65) 

I a2ei 
J 

f ---$ 
&i 

for E: = 0, (66) 

where E is given in Table 1. From these solutions, the 
temperature gradient at the surface can be obtained as ,- 

(69) 
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where 

0)) = - 
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(70) 

Table 1 

i a b c 

t 2y+l 1 4 
x 1 -1 2 

It is seen that these results have an infinite number of 
singularities when ni < - (y + 2)( = xi,crlt.). Further- 
more, we can obtain from these equations the following 
asymptotic relations; 

ji_li [ - (G&O] = c/g, 

j@J-(e;o)c=o] = 0, 

lim [-(Ot)i=O] = ji_mm[-(O~l)r=o] (71) 7-m 

= flm[ - (f9fl)i=o] = 0. ! 
Figures 6 and 7 show the curves of (8fo)i=o and 
(Ol;‘,),=,, respectively, plotted as functions of ni with y 
as a parameter. It is seen from the figures that except 

FIG. 6. The wall gradients, @\,,(rr,, 0) and &(n,, 0). 

near z, = ni,cnt , the ratio lC?~o/6f;li=o is again very 
small. When y > - 1, sign of (8f’O)r=o is the same as 
that of the first-order contribution (&,&=,, for 
rci > Ki,crit. + 1. Since k, is always positive, this means 
that the transverse curvature increases heat transfer for 
this range of xi. This increase in heat transfer is due 
to increase of the diffusion area. The presence of 
vorticity, on the other hand, increases heat transfer for 
k, > 0 while for k, < 0 it decreases heat transfer, 
provided ni > n,,crit. + 1. 

_I 
06- 

(a) 
/ ,-----I___ 

04- ,‘~e,;cq,o,. 
--__ e,l,c --_ - 2 TX 0 , ) 

I 

z 02- 

kL I 
‘kg= 

I 

N : 

I 

0 
d 

..G 

I 

I 
-! 0 2 3 4 5 

06 

I (b) 

/. 
__------___ -- 

04 ,Y’-B,;;(li, ,o), -28:,i~r,,o) 
/. 

z 
kG 

02- 
// 

.Y 
z / 

N 

I : 

3 
c ; 
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FIG. 7. The wall gradients, &(rr,, 0) and e&(x,, 0): 
(a) y = - 1, (b) y = 0, (c) y = 2. 
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Calculation of (e&, for a given body and given 
tem~rature dis~ibution can be made similarly to that 
of (tr,)c=o. As an example, we shall calculate heat 
transfer from an isothermal sphere, for which Watts 
[ 151 already calculated exactly the second-order effect 
of transverse curvature. Here we reconsider this prob- 
lem including the effect of external temperature 
gradient also, but the velocity field is assumed, for 
simplicity, to be irrotational. Then, defining the refer- 
ence length and reference velocity by L = 2a and 
U, = U,, respectively, a being the radius of the sphere 
and U, the uniform velocity of oncoming stream, we 
can finally obtain the following expression for the local 

FIG. 8. The effect of transverse curvature on heat transfer 
from an isothermal sphere. 

FIG. 9. Local Nusselt number around an isothermal sphere 
for H’(0) = 0. 

Nusselt number, 

Nu/Pe+ = 3 
sin2 VI 

It* (cosZ 9 - 3 cos (i, + 2)+ 

+ Pe-* 
i 

-2(e:b+t,e:'i + . ..)z=o 

H’(O) 
-a-------sic2 v, 

T, - H(O) 

where v, is the angle measured from the stagnation 
point of the sphere. Figure 8 shows the distribution 
of the waI1 gradient of the temperature representing the 
effect of transverse curvature. Figure 9 shows the dis- 
tributions of the local Nusselt number around a sphere 
for H’(0) = 0. The average Nusselt number is obtained 
from the relation 

s 

I 
Nu=+ Nu(y) sin v, dv, (73) 

0 

as 

%/Pet = -$ + Pew* (0.85093 -0GO200 + . . .) 

+ OfPe-‘). (74) 

The numerical value 0849 representing the effect of the 
transverse curvature is within about 3.4 per cent of the 
value obtained from the exact solution. 0+821.* 

(b) The caSe of7 P constant 
In this case, we change variables from (4, &‘) to (y, [) 

as in the case of the first-order problem and assume 
the following expansion for 0:‘s (i = 1, t, x), 

0: = %dY, ~)+&(~)~~~(Y,~)+ . . . , (75) 

where E is defined by (35). By substituting this into 
~28)-(30), we can find that the equations for &,(y, [)‘s 
have the same forms as those for the previous case of 
y = constant, so that the solutions given in the previous 
section, (58) and (64), can be immediately used also in 
the present case. The equations for oil’s, on the other 
hand, are rather complicated and their solutions are 
not obtained here. However, judging from the accuracy 
of the present method shown in the previously given 
examples, we can expect that, if the desired accuracy 
for heat transfer is not higher than a few percent, one 
term in the series (75) will be sufficient to give satis- 
factory results. 
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*Watts first derived the following equation, 

x = 1.156Pef + 4.73, 

but which is found, by Hirose, to be in error and corrected as 
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APPROXIMATIONS D’ORDRE PLUS ELEVE DE LA COUCHE LIMITE THERMIQUE 
EN ECOULEMENT NON VISQUEUX 

R&nn&Le problbme du second o&e de la couche limite thermique est form& pour un &oulement 
non visqueux plan ou a~sym~trique. Les kquations rbultantes d’hnergie qui contr6tent ies effets des 
courbures lon~tudin~e et transversaie, du gradient de tempkrature et de la vorticitb du courant ext&ieur, 
sont r&aolues de fapn approch& et de fapn exacte. Des applications de la thtorie sont pr&ent&s pour 

le transfert de cbaleur sur des grappes de tubes elliptiques et le transfert sur une sph&e. 

HOHERE NAHERUNGSVERFAHREN FOR DIE THERMISCHE GRENZSCHICHT 
IN EINER NICHT VISKOSEN STRC)MUNG 

Zusammenfassung-Ein thermisches Grenzschichtproblem 2. Ordnung wird ftir eine reibungsfreie ebene 
oder achsensymmetrische Strijmung formuliert. Mit den erhaltenen Energiegleichungen lassen sich 
&zDerer Temperaturgradient und Rotation sowohl exakt ais such angenahert bestimmen. Anwendungs- 
beispiele ftir die vodiegende Theorie auf die W~rme~bertragung von elfiptischen Stabb~ndeln und von 

einer Kugel werden angegeben. 

PEJJIEHIlE JAAA%l TEl-LJIOBOrO CIIIOfi B flPMBJ-lRxEHHH EOJ-IEE 
BbICOKOrO I-IOPflAKA AJla HEBfi3KOI-0 l-IOTOKA 

Asmo~unn - @ophfynmpyercr 3ana9a Tennoaoro norparim~noro c~loa nnr *eaa3xoro nnocKor0 w 
OCeCHMMeTpHYHOrO IlOTOKa. ~OJIy’leHHbIe ypaBHeHHR 3HeprHH, OIIHCbIBaH)JlJHC BJl%ialiH~$ ITjJOAOJIbHOti 
H nonepeqso8 KPHBH3lib1, mienniero rpanHeHTa TeMlIepaTypbI H CKO&POCTH, PeLUeHbI ~09~0 H np~6n~- 
ncemio. PaccMaTpneaeTcR npnMenenne aaririofi TeopHH nna ufysar neperioca Terma OT nynrca 

wnmmi~ecmx cTepnrHe21 s4 OT cQKpbI. 


